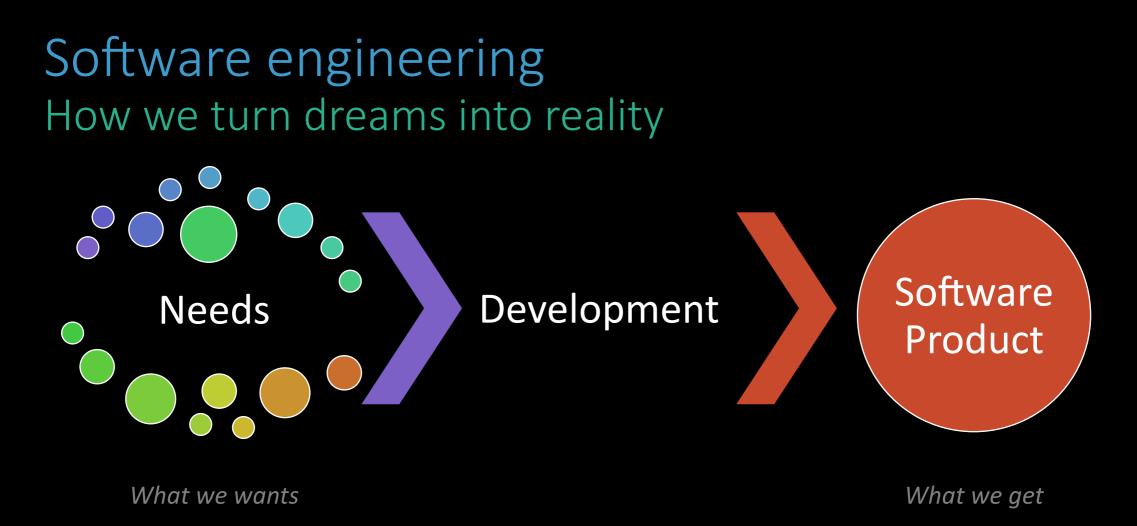


02 -Introduction

Security ((of) softwares)

Thibaut HENIN www.arsouyes.org What is Software Security ?

What is software Vulnerability ?


Software vulnerability definition

A defect

that allows

unauthorized actions

Specifications

Bugs

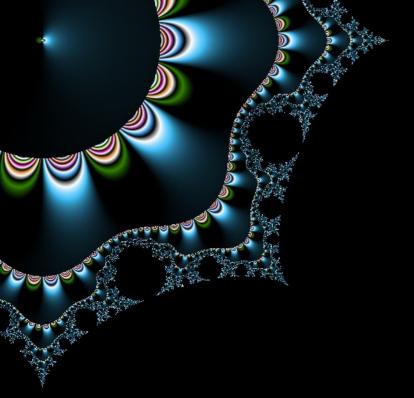
Software Security How we turn nightmares into reality

What we wants

Security Policy

What we get

Vulnerabilities


Two families *i.e.* ISO-27000 : 2005 *versus* 2013

Check Lists

i.e. PCI-DSS, ISO-21434 (road vehicles), Mehari,...

Risk Analysis

i.e. Common Criteria (ISO-15408), CSPN, EBIOS,...

Risk Analysis

Short Introduction

Building a Security Policy

Step 0 – Perimeter What is the subject

Identification

(name, version, editor, ...)

Description

(features / use cases, users, prerequisites, ...)

Step 0 – Perimeter Example with a blog

Product : Speed e-blog
Version number : 2.0

Step 1- Assets Definition

A resource

(information, data, hardware, functionality, ...)

That need to be protected

(against malicious agent)

Step 1- Assets Example

Business assets

A1 - Articles

- A2 Nicknames
- A3 Web browsers

Support assets

- A4 Passwords
- A5 Files configuration
- A6 Files source code
- A7 Servers

Step 2- Security Properties Three main ones

Confidentiality

(only authorized agend can read)

Integrity

(only authorized agent can write)

Availability

(asset can be accessed)

Step 2- Security Properties Other usefull ones

Authenticity

(the resource is the one that have been sent)

Traceability

(access are recorded on a log)

Non repudiation

(nobody can say « it's not me » or « it's someone else »)

Step 2- Coverage matrix Assets and properties

Assets	Confidentiality	Availability	Integrity
A1 - Articles			
A2 - Nicknames			
A3 - Web browsers	✓		
A4 - Passwords	✓		
A5 - Files - configuration	~		~
A6 - Files – source code			
A7 - Servers	✓		✓

Step 3 – Threats Definition

Feared event

(what wrong can happen)

Step 3 – Threats Example

- *T1 Fraudulent modification of article*
- T2 Execution on browser
- T3 Fraudulent deletion of article
- T4 Impersonation of writers
- T5 Password theft
- T6 Theft of account
- T7 Fraudulent access to files
- T8 Fraudulent modification of files
- *T9 Execution on server*

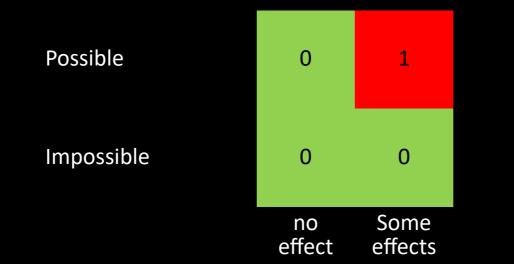
Step 3 – Coverage matrix Assets by threats

Threats	A1 Articles	A2 Nicknames	A3 Browsers	A4 Passwords	A5 Files Config	A6 Files Source code	A7 Servers
	—	—	U –	U –	U —	—	U —
T1 - Modification article	\checkmark	\checkmark					
T2 - Execution, browser	\checkmark	\checkmark	\checkmark \checkmark				
T3 - Deletion article	\checkmark	\checkmark		\checkmark			
T4 - Impersonation	\checkmark	\checkmark					
T5 - Password theft	\checkmark	\checkmark		\checkmark			
T6 - Account theft	\checkmark	\checkmark		\checkmark			
T7 - File access				\checkmark	\checkmark		\checkmark
T8 - File changes	\checkmark	\checkmark	$\overline{\checkmark}$	$\overline{\checkmark}$	\checkmark		\checkmark \checkmark
T9 - Execution, server	\checkmark	\checkmark	\checkmark	$\overline{\checkmark}$	\checkmark	 ✓ 	$\overline{\checkmark}$

Step 4 – Criticity (optionnal) Product of two parameters

Severity - Consequences on the asset

e.g. if articles are defaced, the branding of the editor is hurt


Probability - Ease of the threat

e.g. access to writers' password database

Step 4 – Criticity Visually

For sure	4	8	12	16
Probable	3	6	9	12
May occurs	2	4	6	8
Not expected	1	2	3	4
	no effect	lt hurts	Low damage	High damage

Step 4 – Criticity (simplification) For software (since we use booleans)

Step 5- Measures *a.k.a.* security function / security features

Things to mitigate the risks

Eg. Access control, backups, updates, training, monitoring, ...

Step 5- Coverage matrix Threats by measures

Mesure	Article modification	Password theft	Execution on server
Authentication & access control	 		
Secure storage of password		\checkmark	
Input data filtering			~

Step 5b- Residual risks (optional) Value after measures take effects

Mesure	New Probability	New Severity	New Risk
Article modification \rightarrow Access control	1 ightarrow 0	1	1 ightarrow 0
Password theft \rightarrow Secure storage	1	$1 \rightarrow 0$	$1 \rightarrow 0$
Execution on server → Input filtering	1 ightarrow 0	1	1 ightarrow 0

Security Target Definition (CSPN / CC)

Document that tells :

« This is how this software claims to be secure »

(all previous content)

Security Policy Definition

Document that tells : « How we claims to be secure » (same but for everything beyond software)

Security Audit Definition

Procedure that check : « The claims are effectives »

So what is a software vulnerability ?

Bypass of Security Policy

Why are they so common ?

By Negligence

« Don't touch what works »

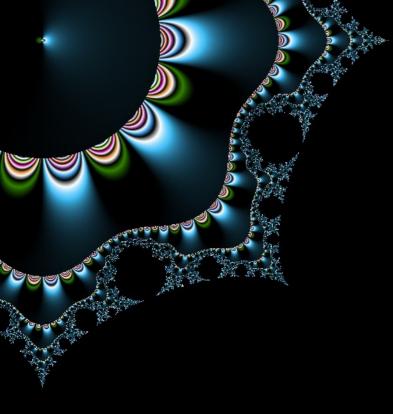
By Conservatism

« We've always done that way! »

Technical debt

« It takes to much time to do it properly »

« We'll fix it later »


« I didn't know »

Out of laziness

« It's too boooooring »

The error is human

« Oups, I didn't notice »

Discoveries

By whom ? Why and How ?

It's a job Rather twice than once

Security Audit

Planned for certification

Selling your time

By editor, user or agency

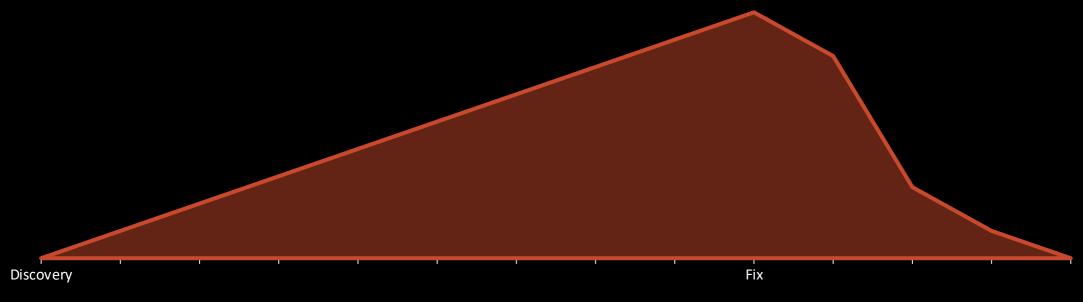
Bug Hunting

Opportunistic discoveries (unplanned)

Selling vulnerabilities

To editors (bounties), agencies or mafia

No Disclosure Keep it secret


Avoid wild exploitation

(minimize damages)

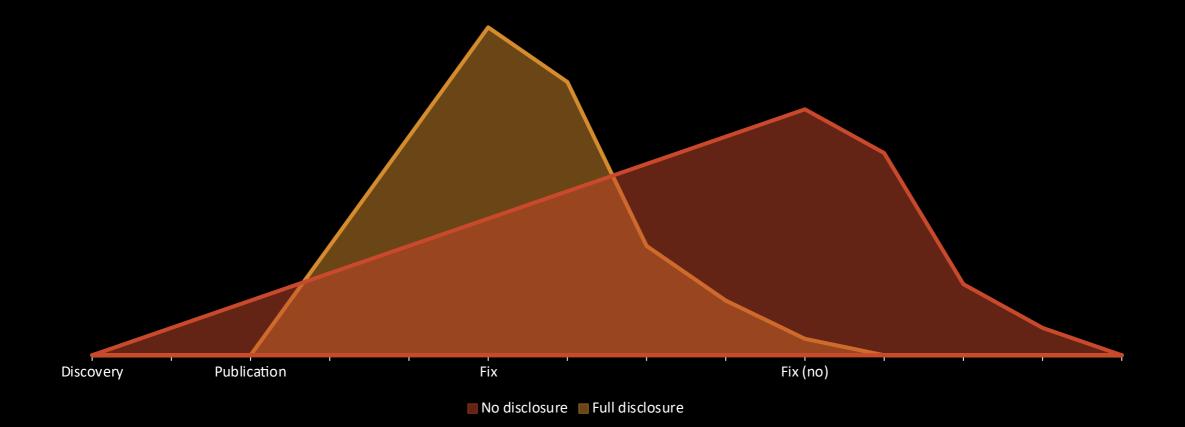
Sell exploits

(no fix means high exploit value)

Life of a vulnerability threat No Disclosure

No disclosure

Full Disclosure Publish everything


Force editors to fix

(avoid further exploitation)

Be credited

(and becomes famous)

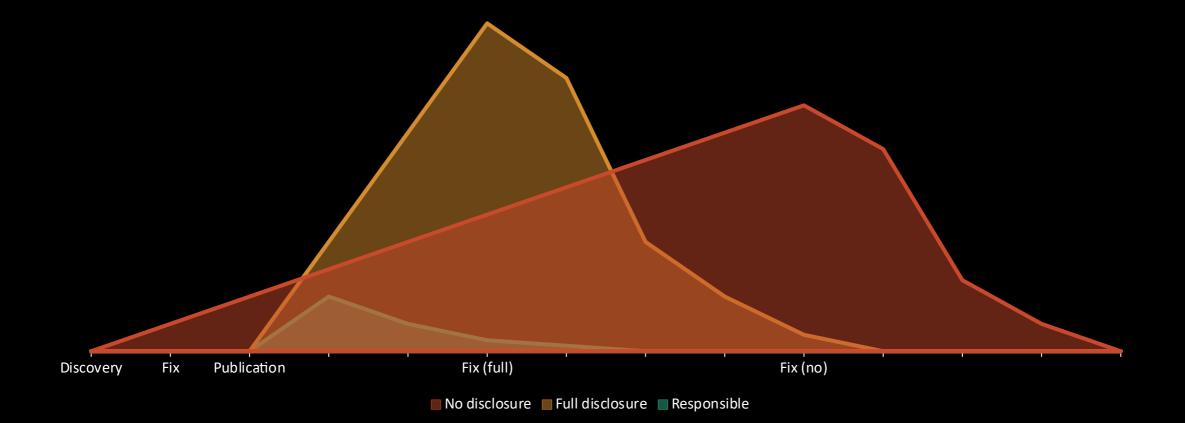
Life of a vulnerability threat Full Disclosure

Responsible Disclosure Brave new world

Tell editor

(negociate a delay)

Then publish


(and becomes famous)

Get a bounty

(and becomes rich)

Life of a vulnerability threat

Responsible disclosure

World Wide Vulnerability Database

CVE

(Common Vulnerability and Exposure)

Unique Identifier

(CVE-AAAA-NNNN)

Edited by MITRE https://www.cve.org/

Common Vulnerability Scoring System Score /10

Base score

Options

Likelihood

Exploitation Vector, Complexity, Authentication Temporal Exploit, fix, confidence

Criticity

Impact Confidentiality, Integrity, Availability Environment Use's context

The real world is full of human beings

Full of Politics It's not a vulnerability (it's a feature)

When auditing : Scope

Marketing vs reality

When bug bounting : Scope and Score

Marketing and Budget vs bounties

Optimistic Ostrich

It works, everything's good We'll see later Nobody wants to attack us

Paranoid perfectionist

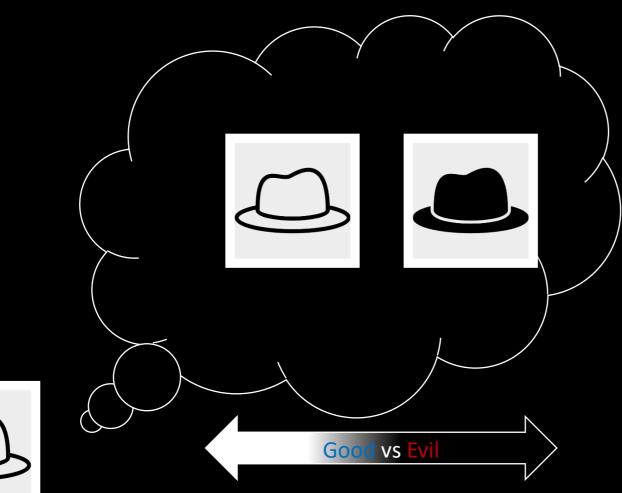
Everything must be perfect A vulnerability is a proof of incompetence There always remain a risk

Constructive humility

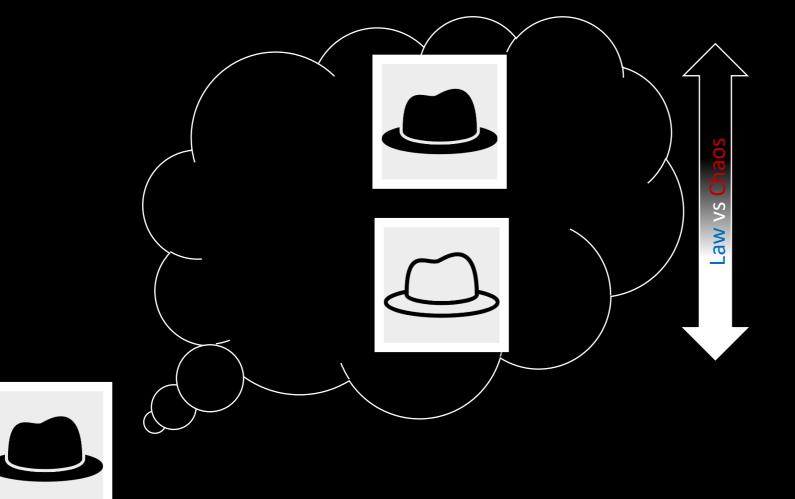
Where are the weaknesses ? How can we fix them ? Continuous improvement

« It's not perfect but we work toward »

Which side of the force ?

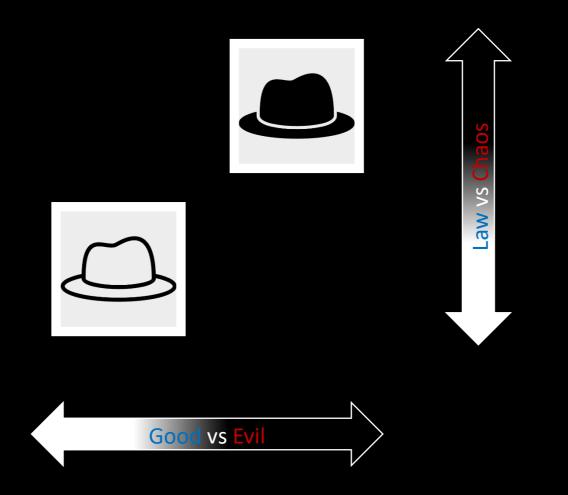

Everything would be about which side you embrace...

Hats... Good vs Bads ?



C'era una volta il West

Hats colors... Viewed by White Hats



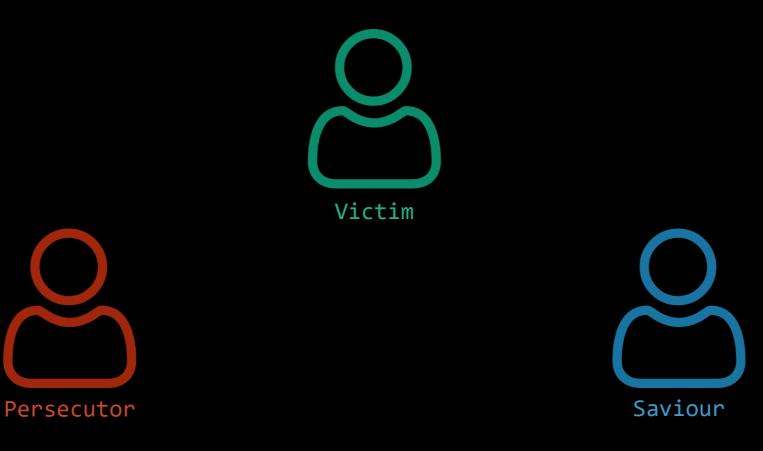
Hats colors... Viewed by Black Hats

Hat icons by : flaticon.com

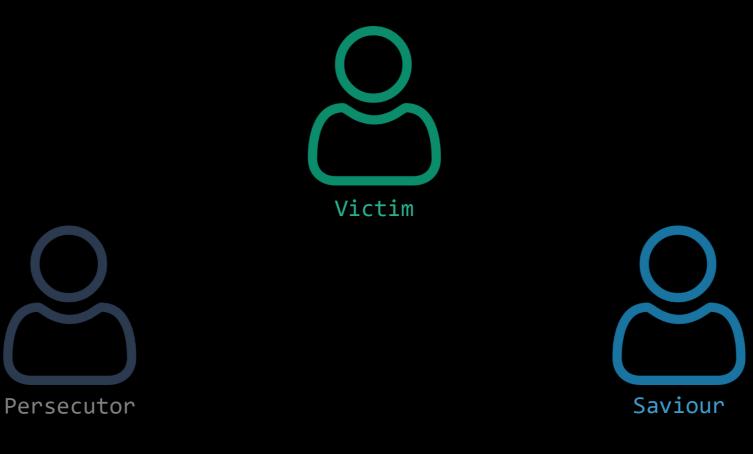
Alignments Dungeons & Dragons (3.5)

Hat icons by : flaticon.com

Teams Attack vs Defense



Hacker icons by : flaticon.com


Unfair Game Asymetric confrontation

	Blue team (defense)	Red team (attacks)
Defeat	Bad consequences	-
Victory	-	Positive consequences

Karpman's Triangle Psychological Game

Two Player version With one free role

Changing position Build awkwardness

Never ending story (or at least as a tragedy)

Every one must take care of its own security

(don't expect any provider to save you)

One can not secure someone else

(don't expect your client to play fair)

<u>Seg</u>

And what you should learn

There is something for everyone (and a lot of paths)

What you like	White / Blue	Black / Red
Humans & organisations	CISO	Auditor
Systems & Networks	Secops, SOC	Pentester
Codes & Softwares	Dev, devsec	Evaluators Bug Hunters
Investigation	Forensic (law enforcement vs anti-virus)	